References
<A NAME="RD06605ST-1A">1a</A>
Rawal VH.
Michoud C.
Monestel RF.
J. Am. Chem. Soc.
1993,
115:
3030
<A NAME="RD06605ST-1B">1b</A>
Rawal VH.
Iwasa S.
J. Org. Chem.
1994,
59:
2685
<A NAME="RD06605ST-1C">1c</A>
Enders D.
Meyer O.
Liebigs Ann. Chem.
1996,
1023
<A NAME="RD06605ST-1D">1d</A>
Kozmin SA.
Rawal VH.
J. Org. Chem.
1997,
62:
5252
<A NAME="RD06605ST-2A">2a</A>
Janey JM.
Iwama T.
Kozmin SA.
Rawal VH.
J. Org. Chem.
2000,
65:
9059
<A NAME="RD06605ST-2B">2b</A>
Kozmin SA.
Janey JM.
Rawal VH.
J. Org. Chem.
1999,
64:
3039
<A NAME="RD06605ST-2C">2c</A>
Overman LE.
Freerks RL.
Petty CB.
Clizbe LA.
Ono RK.
Taylor GF.
Jessup PJ.
J. Am. Chem. Soc.
1981,
103:
2816
<A NAME="RD06605ST-2D">2d</A>
Oppolzer W.
Bieber L.
Francotte E.
Tetrahedron Lett.
1979,
16:
4537
<A NAME="RD06605ST-2E">2e</A>
Neumann H.
Wangelin AJV.
Gördes D.
Beller M.
J. Am. Chem. Soc.
2001,
123:
8398
<A NAME="RD06605ST-2F">2f</A>
Neumann H.
Wangelin AJV.
Gordes D.
Spannenberg A.
Baumann W.
Beller M.
Tetrahedron
2002,
58:
2381
<A NAME="RD06605ST-2G">2g</A>
Wangelin AJV.
Neumann H.
Gördes D.
Spannenberg A.
Beller M.
Org. Lett.
2001,
3:
2895
<A NAME="RD06605ST-3">3</A>
Abdulla RF.
Brinkmeyer RS.
Tetrahedron
1979,
33:
1675
<A NAME="RD06605ST-4A">4a</A>
Vetelino MG.
Coe JW.
Tetrahedron Lett.
1994,
35:
219
<A NAME="RD06605ST-4B">4b</A>
Dupau P.
Renouard T.
Bozec HL.
Tetrahedron Lett.
1996,
37:
7503
<A NAME="RD06605ST-4C">4c</A>
Viau L.
Senechal K.
Maury O.
Guégan JP.
Dupau P.
Toupet L.
Bezec HL.
Synthesis
2003,
577
<A NAME="RD06605ST-4D">4d</A>
Riesgo EC.
Jin X.
Thummel RP.
J. Org. Chem.
1996,
61:
3017
<A NAME="RD06605ST-5A">5a</A>
Caron S.
Vazquez E.
J. Org. Chem.
2003,
68:
4104
<A NAME="RD06605ST-5B">5b</A>
Siu J.
Baxendale IR.
Ley SV.
Org. Biomol. Chem.
2004,
2:
160
<A NAME="RD06605ST-5C">5c</A>
Tois J.
Vahermo M.
Koshinen A.
Tetrahedron Lett.
2005,
46:
735
<A NAME="RD06605ST-6">6</A>
Lee KY.
Lee MJ.
Gowrisankar S.
Kim JN.
Tetrahedron Lett.
2004,
45:
5043
<A NAME="RD06605ST-7">7</A>
Cho CS.
Lim DK.
Zhang JQ.
Kim TJ.
Shim SC.
Tetrahedron Lett.
2004,
45:
5653
<A NAME="RD06605ST-8">8</A>
Wangelin AJV.
Neumann H.
Gördes D.
Klaus S.
Jiao H.
Spannenberg A.
Krüger T.
Wendler C.
Thurow K.
Stoll N.
Beller M.
Chem. Eur. J.
2003,
9:
2273
<A NAME="RD06605ST-9">9</A>
Mohanakrishnan AK.
Balamurugan R.
Tetrahedron Lett.
2005,
46:
4045
<A NAME="RD06605ST-10">10</A>
Mohanakrishnan AK.
Amaladass P.
Tetrahedron Lett.
2005,
46:
4225
<A NAME="RD06605ST-11">11</A> All the β-arylcrotonates were prepared by using organozinc addition followed
by dehydration using POCl3. See:
Shriner RL.
Org React.
1942,
1:
1
<A NAME="RD06605ST-12">12</A>
General Procedure for the One-Pot Synthesis of Phthalic Acid Derivatives.
The DMF·DMA (1.7 mL, 2.5 mmol) was added to β-phenylethylcrotonate (1.0 g, 1 mmol)
at r.t. under N2. The resulting solution was refluxed at 120 °C for 5 h. After completion of the enamine
formation (monitored by TLC), the reaction mixture was cooled to 60 °C, DMAD (0.97
mL, 1.5 mmol) was added and stirred for 30 min. The reaction was quenched by adding
5% ice cold HCl (50 mL), extracted with CH2Cl2 (2 × 25 mL). The combined extracts were washed with brine (2 × 20 mL) and dried (Na2SO4). Removal of the solvent followed by flash column chromatographic purification (silica
gel, hexane-EtOAc, 5:1) afforded 2a as pale-yellow liquid (0.94 g, 52%).
Spectral Data of Selected Compounds.
Compound 2b: 1H NMR (300 MHz, CDCl3): δ = 1.02 (t, J = 7.1 Hz, 3 H), 2.40 (s, 3 H), 3.93 (s, 3 H), 3.94 (s, 3 H), 4.09 (q, J = 7.1 Hz, 2 H), 7.24 (s, 4 H), 7.51 (d, J = 8.0 Hz, 1 H), 8.04 (d, J = 8.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 13.49, 21.16, 52.73, 52.88, 61.71, 127.88, 127.98, 129.11, 129.24, 131.26,
131.96, 134.35, 136.26, 138.17, 144.97, 165.72, 167.42, 168.11. MS (EI): m/z (%) = 356 (100) [M+], 325 (52), 311 (42), 279 (20).
Compound 2g: 1H NMR (400 MHz, CDCl3): δ = 0.87 (t, J = 7.2 Hz, 3 H), 3.94 (s, 3 H), 3.95 (s, 3 H), 4.02 (q, J = 7.2 Hz, 2 H), 7.45-7.47 (m, 1 H), 7.50-7.55 (m, 2 H), 7.61 (d, J = 8.0 Hz, 1 H), 7.82-7.89 (m, 4 H), 8.08 (d, J = 8.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 13.45, 52.77, 52.91, 61.77, 125.97, 126.59, 126.63, 127.39, 127.68, 127.89,
128.14, 131.28, 131.40, 131.54, 132.28, 132.79, 133.03, 134.58, 136.64, 144.94, 165.71,
167.36, 168.06. MS (EI): m/z (%) = 392 (100) [M+], 347 (16), 315 (25), 202 (32).
Compound 2h: 1H NMR (500 MHz, CDCl3): δ = 1.11 (t, J = 7.4 Hz, 3 H), 3.89 (s, 3 H), 3.90 (s, 3 H), 4.17 (q, J = 7.4 Hz, 2 H), 7.04-7.10 (m, 2 H), 7.38 (d, J = 5.1 Hz, 1 H), 7.58 (d, J = 8.0 Hz, 1 H), 7.96 (d, J = 8.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 13.74, 52.95, 52.99, 53.10, 62.13, 127.51, 127.63, 128.28, 131.17, 131.62,
132.40, 134.29, 137.06, 139.79, 165.68, 167.35, 167.82. MS (EI): m/z (%) = 348 (100) [M+], 303 (61), 257 (58), 186 (26).
Compound 2d′: 1H NMR (400 MHz, CDCl3): δ = 1.03 (t, J = 7.2 Hz, 3 H), 3.88 (s, 3 H), 4.09 (q, J = 7.2 Hz, 2 H), 7.18 (d, J = 8.0 Hz, 2 H), 7.30-7.35 (m, 3 H), 8.09 (d, J = 6.8 Hz, 1 H), 8.42 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 13.74, 52.18, 61.31, 121.64, 128.29, 129.48, 129.56, 130.79, 131.17, 131.40,
131.99, 133.98, 135.01, 138.92, 145.49, 165.95, 167.39. MS (EI): m/z (%) = 318 (100) [M+], 287 (18), 273 (85), 186 (21).